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Transactional

Transactional

ACID properties
@ Atomicity
@ Consistency
@ |solation
@ Durability

Transactions: All or nothing.
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User, application, database
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Scalable

Full replication

@ State is fully replication across all
servers
e Writes need to be performed on
all servers
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Scalable

Sharding

@ Withdraw 100$ from checking account, deposit to savings
account.
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Scalable

Sharding

@ Withdraw 100$ from checking account, deposit to savings
account.
o Operation 1: Withdraw 100$ from checking account.
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Sharding

@ Withdraw 100$ from checking account, deposit to savings
account.
o Operation 1: Withdraw 100$ from checking account.
@ Operation 2: Deposit 100$ to savings account.
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Scalable

Sharding

@ Withdraw 100$ from checking account, deposit to savings
account.
o Operation 1: Withdraw 100$ from checking account.
@ Operation 2: Deposit 100$ to savings account.
@ Could something have changed between operations one
and two?
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Scalable

Sharding

@ Withdraw 100$ from checking account, deposit to savings
account.
o Operation 1: Withdraw 100$ from checking account.
@ Operation 2: Deposit 100$ to savings account.
@ Could something have changed between operations one
and two?

Trade-off between transactional consistency and scalability.
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Scalable

How far can we scale without ACID?

@ Emphasis on scalability

@ Several distributed data stores, both proprietary and open
source.

BigTable, HBase

Dynamo, Cassandra, Riak

SimpleDB

CouchDB, MongoDB, ...

@ Transactional consistency not supported.



“Practice is just around the corner”

@ Consistent hashing

@ Chord

@ Object versioning with Vector Clocks
@ Quorums

@ Replica synchronization

@ Gossiping



Design considerations

@ Incremental scalability
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@ Incremental scalability
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@ Decentralization
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Design considerations

@ Incremental scalability
@ Symmetry

@ Decentralization

@ Heterogeneity

@ High Availability



Design considerations

CAP Theorem

Of three properties of shared-data systems
@ data consistency
@ system availability
@ tolerance to network partition

only two can be achieved at any given time.?@

2Brewer, E. A. 2000. Towards robust distributed systems (abstract). In
Proceedings of the 19th Annual ACM Symposium on Principles of Distributed
Computing (July 16-19, Portland, Oregon): 7.




Design considerations

CAP Theorem

Of three properties of shared-data systems
@ data consistency
@ system availability
@ tolerance to network partition

only two can be achieved at any given time.?@

2Brewer, E. A. 2000. Towards robust distributed systems (abstract). In
Proceedings of the 19th Annual ACM Symposium on Principles of Distributed
Computing (July 16-19, Portland, Oregon): 7.

We need to relax some constraints.



Interface

@ get(key)
o A single object
o List of objects with conflicting versions and a context

@ put(key, context, object)



Interface

@ get(key)
o A single object
o List of objects with conflicting versions and a context

@ put(key, context, object)

@ Objects are binary blobs, Dynamo had no schema.
@ Keys are hashed using MD5.



Partitioning Algorithm
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Partitioning Algorithm

Chord system
... with a twist
@ Each node gets multiple
tokens in the ring
Virtual nodes address:
@ Heterogeneity

Actual node
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Partitioning Algorithm

Chord system

... with a twist
@ Each node gets multiple
tokens in the ring
Virtual nodes address:
@ Heterogeneity
@ Incremental scaling

Actual node
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Replication

Each object is replicated to N / @  NodesB. ¢
Vb and D store
nodes '@ @ | e
| range (AB)
@ N-1 successors to the 3 77 ) nclding

AY

coordinator N @ @



Request coordination

Read quorum

Traditional quorum Ty GV L

e R+W>N Nz Ny =10 \ / Na=7, Ny =6
Write quorum
e W>N/2 @ ®
@ Dynamo allows clients to TR
tune N, R and W i i
e ® & H



Handling Failures

Sloppy-Quorum

@ The set of nodes in N may
change




Handling Failures

I \ and D store

Sloppy-Quorum Q) @ i

@ The set of nodes in N may IONRON
change

Anti-entropy

@ Merkel hash trees used to
find “out of sync” keys

Hash Hash Hash Hash
0-0 0-1 1-0 1-1
Data Data Data Data

block block block block
000 001 002 003




Data Versioning

Each object has a Vector clock
@ Captures causal ordering

write
handled by Sx

D1 ([Sx.1])

write
handled by Sx

D2 ([Sx,2])

write write
handlled by Sy handied by Sz

D3 ([Sx.2][Sy.1])

reconciled
and w.rmen by

5 ([Sx,3].[Sy.1][S2.1])

D4 ([Sx,2],[Sz,1])



Data Versioning

Conflict resolution

@ The when
o During writes?
o During reads?



Data Versioning

Conflict resolution

@ The when
o During writes?
@ During reads?
@ and the who

@ By the data store?
o By the application?



Data Versioning

When do divergent version arise?
@ Failure scenarios
o Node, data center, network partitions

@ Large number of concurrent writes




Data Versioning

When do divergent version arise?
@ Failure scenarios
o Node, data center, network partitions

@ Large number of concurrent writes

How frequently are divergent versions created?’

Versions  Requests

1 99.94%
2 0.00057%
3 0.00047%
4 0.00009%

24 hour profile of the Shopping Cart Serivce



Client-driven vs Server-driven coordination

% NodesB.C
Client-driven vs Server-driven | andD store
uding
99.9th 99.9th Average Average
percentile percentile read write
read latency write latency  latency  latency
Server-driven 68.9 68.5 3.9 4.02
Client-driven 30.4 30.4 1.55 1.9

Times are in milliseconds.



Client-driven vs Server-driven coordination

Amazon

Client Requests
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Client-driven vs Server-driven coordination

Amazon

@ Service architecture
@ Decentralized
@ Loosely coupled

@ SLA expressed and
measured at the 99.9%
percentile

@ Optimizations not
focused on averages

Client Requests
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Distributed buckets
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