
Introduction Dynamo Aukaefni

Gagnasafnsfræði

Björn Patrick Swift

November 18, 2011



Introduction Dynamo Aukaefni

Hver er maðurinn

Hver er maðurinn

2011: MSc Parallel and
Distributed Computer
Systems, Vrije Universiteit
2008: BSc
Hugbúnaðarverkfræði,
Háskóli Íslands

2011 – : Amazon AWS
2006 – 2009: CCP
2006: FRISK



Introduction Dynamo Aukaefni

Transactional

Transactional

ACID properties
Atomicity
Consistency
Isolation
Durability

Transactions: All or nothing.

User

Application

Database

User

Application

User

www.draw-shapes.de www.draw-shapes.de www.draw-shapes.de

Database

Application

www.draw-shapes.de www.draw-shapes.de www.draw-shapes.de

Database

www.draw-shapes.de



Introduction Dynamo Aukaefni

Scalable

User, application, database

Application layer scales well.

Same does not hold for the database
layer

User

Application

Database

User

Application

User

www.draw-shapes.de www.draw-shapes.de www.draw-shapes.de

Database

Application

www.draw-shapes.de www.draw-shapes.de www.draw-shapes.de

Database

www.draw-shapes.de



Introduction Dynamo Aukaefni

Scalable

User, application, database

Application layer scales well.

Same does not hold for the database
layer

User

Application

Database

User

Application

User

www.draw-shapes.de www.draw-shapes.de www.draw-shapes.de

Database

Application

www.draw-shapes.de www.draw-shapes.de www.draw-shapes.de

Database

www.draw-shapes.de



Introduction Dynamo Aukaefni

Scalable

Full replication

State is fully replication across all
servers

Writes need to be performed on
all servers

User Application

Database

www.draw-shapes.de



Introduction Dynamo Aukaefni

Scalable

Sharding

Withdraw 100$ from checking account, deposit to savings
account.

Operation 1: Withdraw 100$ from checking account.
Operation 2: Deposit 100$ to savings account.
Could something have changed between operations one
and two?

Trade-off between transactional consistency and scalability.

Application

www.draw-shapes.de

Users Savings accounts Checking accounts



Introduction Dynamo Aukaefni

Scalable

Sharding

Withdraw 100$ from checking account, deposit to savings
account.

Operation 1: Withdraw 100$ from checking account.
Operation 2: Deposit 100$ to savings account.
Could something have changed between operations one
and two?

Trade-off between transactional consistency and scalability.

Application

www.draw-shapes.de

Users Savings accounts Checking accounts



Introduction Dynamo Aukaefni

Scalable

Sharding

Withdraw 100$ from checking account, deposit to savings
account.

Operation 1: Withdraw 100$ from checking account.
Operation 2: Deposit 100$ to savings account.
Could something have changed between operations one
and two?

Trade-off between transactional consistency and scalability.

Application

www.draw-shapes.de

Users Savings accounts Checking accounts



Introduction Dynamo Aukaefni

Scalable

Sharding

Withdraw 100$ from checking account, deposit to savings
account.

Operation 1: Withdraw 100$ from checking account.
Operation 2: Deposit 100$ to savings account.
Could something have changed between operations one
and two?

Trade-off between transactional consistency and scalability.

Application

www.draw-shapes.de

Users Savings accounts Checking accounts



Introduction Dynamo Aukaefni

Scalable

Sharding

Withdraw 100$ from checking account, deposit to savings
account.

Operation 1: Withdraw 100$ from checking account.
Operation 2: Deposit 100$ to savings account.
Could something have changed between operations one
and two?

Trade-off between transactional consistency and scalability.

Application

www.draw-shapes.de

Users Savings accounts Checking accounts



Introduction Dynamo Aukaefni

Scalable

How far can we scale without ACID?

Emphasis on scalability
Several distributed data stores, both proprietary and open
source.

BigTable, HBase
Dynamo, Cassandra, Riak
SimpleDB
CouchDB, MongoDB, ...

Transactional consistency not supported.



Introduction Dynamo Aukaefni

“Practice is just around the corner”

Consistent hashing
Chord
Object versioning with Vector Clocks
Quorums
Replica synchronization
Gossiping



Introduction Dynamo Aukaefni

Design considerations

Incremental scalability
Symmetry
Decentralization
Heterogeneity
High Availability



Introduction Dynamo Aukaefni

Design considerations

Incremental scalability
Symmetry
Decentralization
Heterogeneity
High Availability



Introduction Dynamo Aukaefni

Design considerations

Incremental scalability
Symmetry
Decentralization
Heterogeneity
High Availability



Introduction Dynamo Aukaefni

Design considerations

Incremental scalability
Symmetry
Decentralization
Heterogeneity
High Availability



Introduction Dynamo Aukaefni

Design considerations

Incremental scalability
Symmetry
Decentralization
Heterogeneity
High Availability



Introduction Dynamo Aukaefni

Design considerations

CAP Theorem
Of three properties of shared-data systems

data consistency
system availability
tolerance to network partition

only two can be achieved at any given time.a

aBrewer, E. A. 2000. Towards robust distributed systems (abstract). In
Proceedings of the 19th Annual ACM Symposium on Principles of Distributed
Computing (July 16-19, Portland, Oregon): 7.

We need to relax some constraints.



Introduction Dynamo Aukaefni

Design considerations

CAP Theorem
Of three properties of shared-data systems

data consistency
system availability
tolerance to network partition

only two can be achieved at any given time.a

aBrewer, E. A. 2000. Towards robust distributed systems (abstract). In
Proceedings of the 19th Annual ACM Symposium on Principles of Distributed
Computing (July 16-19, Portland, Oregon): 7.

We need to relax some constraints.



Introduction Dynamo Aukaefni

Interface

get(key)
A single object
List of objects with conflicting versions and a context

put(key, context, object)

Objects are binary blobs, Dynamo had no schema.
Keys are hashed using MD5.



Introduction Dynamo Aukaefni

Interface

get(key)
A single object
List of objects with conflicting versions and a context

put(key, context, object)

Objects are binary blobs, Dynamo had no schema.
Keys are hashed using MD5.



Introduction Dynamo Aukaefni

Partitioning Algorithm

Chord system

... with a twist
Each node gets multiple
tokens in the ring

Virtual nodes address:
Heterogeneity
Incremental scaling

0
15

214

313

412

8 79

610

511

1

Actual node

{2,3,4}

{5,6,7}

{8,9,10,11,12}

{13,14,15} {0,1}

Associated 
data keys



Introduction Dynamo Aukaefni

Partitioning Algorithm

Chord system

... with a twist
Each node gets multiple
tokens in the ring

Virtual nodes address:
Heterogeneity
Incremental scaling

0
15

214

313

412

8 79

610

511

1

Actual node

{2,3,4}

{5,6,7}

{8,9,10,11,12}

{13,14,15} {0,1}

Associated 
data keys



Introduction Dynamo Aukaefni

Partitioning Algorithm

Chord system

... with a twist
Each node gets multiple
tokens in the ring

Virtual nodes address:
Heterogeneity
Incremental scaling

0
15

214

313

412

8 79

610

511

1

Actual node

{2,3,4}

{5,6,7}

{8,9,10,11,12}

{13,14,15} {0,1}

Associated 
data keys



Introduction Dynamo Aukaefni

Partitioning Algorithm

Chord system

... with a twist
Each node gets multiple
tokens in the ring

Virtual nodes address:
Heterogeneity
Incremental scaling

0
15

214

313

412

8 79

610

511

1

Actual node

{2,3,4}

{5,6,7}

{8,9,10,11,12}

{13,14,15} {0,1}

Associated 
data keys



Introduction Dynamo Aukaefni

Replication

Each object is replicated to N
nodes

N-1 successors to the
coordinator



Introduction Dynamo Aukaefni

Request coordination

Traditional quorum
R + W > N
W > N/2
Dynamo allows clients to
tune N, R and W

A A AB B BC C CD D D

E E EF F FG G GH H H

I I IJ J JK K KL L L

Read quorum

Write quorum
NR WN= 3, = 10 NR WN= 7, = 6 NR WN= 1, = 12

(a) (b) (c)

A A AB B BC C CD D D

E E EF F FG G GH H H

I I IJ J JK K KL L L

Read quorum

Write quorum
NR WN= 3, = 10 NR WN= 7, = 6 NR WN= 1, = 12

(a) (b) (c)



Introduction Dynamo Aukaefni

Handling Failures

Sloppy-Quorum
The set of nodes in N may
change

Anti-entropy
Merkel hash trees used to
find “out of sync” keys



Introduction Dynamo Aukaefni

Handling Failures

Sloppy-Quorum
The set of nodes in N may
change

Anti-entropy
Merkel hash trees used to
find “out of sync” keys



Introduction Dynamo Aukaefni

Data Versioning

Each object has a Vector clock
Captures causal ordering



Introduction Dynamo Aukaefni

Data Versioning

Conflict resolution

The when
During writes?
During reads?

and the who
By the data store?
By the application?



Introduction Dynamo Aukaefni

Data Versioning

Conflict resolution

The when
During writes?
During reads?

and the who
By the data store?
By the application?



Introduction Dynamo Aukaefni

Data Versioning

When do divergent version arise?
Failure scenarios

Node, data center, network partitions

Large number of concurrent writes

How frequently are divergent versions created?1

Versions Requests
1 99.94%
2 0.00057%
3 0.00047%
4 0.00009%

124 hour profile of the Shopping Cart Serivce



Introduction Dynamo Aukaefni

Data Versioning

When do divergent version arise?
Failure scenarios

Node, data center, network partitions

Large number of concurrent writes

How frequently are divergent versions created?1

Versions Requests
1 99.94%
2 0.00057%
3 0.00047%
4 0.00009%

124 hour profile of the Shopping Cart Serivce



Introduction Dynamo Aukaefni

Client-driven vs Server-driven coordination

Client-driven vs Server-driven
coordination

99.9th 99.9th Average Average
percentile percentile read write

read latency write latency latency latency
Server-driven 68.9 68.5 3.9 4.02
Client-driven 30.4 30.4 1.55 1.9

Times are in milliseconds.



Introduction Dynamo Aukaefni

Client-driven vs Server-driven coordination

Amazon

Service architecture
Decentralized
Loosely coupled

SLA expressed and
measured at the 99.9th

percentile
Optimizations not
focused on averages



Introduction Dynamo Aukaefni

Client-driven vs Server-driven coordination

Amazon

Service architecture
Decentralized
Loosely coupled

SLA expressed and
measured at the 99.9th

percentile
Optimizations not
focused on averages



Introduction Dynamo Aukaefni

Distributed buckets

C

D

EF

G

H

BI

AJ



Introduction Dynamo Aukaefni

Distributed buckets

C

D

EF

G

H

BI

AJ



Introduction Dynamo Aukaefni

Distributed buckets

C

D

EF

G

H

BI

AJ



Introduction Dynamo Aukaefni

Distributed buckets

C

D

EF

G

H

BI

AJ



Introduction Dynamo Aukaefni

Distributed buckets

C

D

EF

G

H

BI

AJ



Introduction Dynamo Aukaefni

Distributed buckets

C

D

EF

G

H

BI

AJ



Introduction Dynamo Aukaefni

Distributed buckets

C

D

EF

G

H

BI

AJ



Introduction Dynamo Aukaefni

Distributed buckets

C

D

EF

G

H

BI

AJ



Introduction Dynamo Aukaefni

Distributed buckets

C

D

EF

G

H

BI

AJ



Introduction Dynamo Aukaefni

Data placement

C

D

EF

G

H

BI

AJ

Random

C

D

EF

G

H

BI

AJ

Clustered


	Dynamo
	Design considerations
	Interface
	Partitioning Algorithm
	Replication
	Request coordination
	Handling Failures
	Data Versioning
	Client-driven vs Server-driven coordination

	Aukaefni

