Gagnasafnsfraedi

Bjorn Patrick Swift

November 18, 2011

Introduction
[]

Hver er madurinn

Hver er madurinn

@ 2011: MSc Parallel and
Distributed Computer
Systems, Vrije Universiteit

@ 2008: BSc
Hugbunadarverkfraedi,
Haskoli islands

@ 2011 —: Amazon AWS
@ 2006 — 2009: CCP
@ 2006: FRISK

Introduction
L]

Transactional

Transactional

ACID properties
@ Atomicity
@ Consistency
@ |solation
@ Durability

Transactions: All or nothing.

A

User

:'
=]
Application

i
-

Database

Introduction
@000

Scalable

User, application, database

A

User

=) E) 2
Application

il

Database

Application layer scales well.

Introduction
@000

Scalable

User, application, database

A

User
Application layer scales well. l
&) &) &
Same does not hold for the database Application
layer l

Database

Introduction
(o] le]e}

Scalable

Full replication

@ State is fully replication across all
servers
e Writes need to be performed on
all servers

E' —
L I-_
Application =

F=

Database

Introduction
[e]e] e}

Scalable

Sharding

@ Withdraw 100$ from checking account, deposit to savings
account.

-

Application

Y

% Y +
&) (ee) (&8

Users Savings accounts Checking accounts

Introduction
[e]e] e}

Scalable

Sharding

@ Withdraw 100$ from checking account, deposit to savings
account.
o Operation 1: Withdraw 100$ from checking account.

-

Application

Y

% Y +
&) (ee) (&8

Users Savings accounts Checking accounts

Introduction
[e]e] e}

Scalable

Sharding

@ Withdraw 100$ from checking account, deposit to savings
account.
o Operation 1: Withdraw 100$ from checking account.
@ Operation 2: Deposit 100$ to savings account.

-

Application

Y

% Y +
&) (ee) (&8

Users Savings accounts Checking accounts

Introduction
[e]e] e}

Scalable

Sharding

@ Withdraw 100$ from checking account, deposit to savings
account.
o Operation 1: Withdraw 100$ from checking account.
@ Operation 2: Deposit 100$ to savings account.
@ Could something have changed between operations one
and two?

-

Application

Y

% Y +
&) (ee) (&8

Users Savings accounts Checking accounts

Introduction
[e]e] e}

Scalable

Sharding

@ Withdraw 100$ from checking account, deposit to savings
account.
o Operation 1: Withdraw 100$ from checking account.
@ Operation 2: Deposit 100$ to savings account.
@ Could something have changed between operations one
and two?

Trade-off between transactional consistency and scalability.

-

Application

% A J +
&) (ee) (&8

Users Savings accounts Checking accounts

Introduction
[e]ele]]

Scalable

How far can we scale without ACID?

@ Emphasis on scalability

@ Several distributed data stores, both proprietary and open
source.

BigTable, HBase

Dynamo, Cassandra, Riak

SimpleDB

CouchDB, MongoDB, ...

@ Transactional consistency not supported.

“Practice is just around the corner”

@ Consistent hashing

@ Chord

@ Object versioning with Vector Clocks
@ Quorums

@ Replica synchronization

@ Gossiping

Design considerations

@ Incremental scalability

Design considerations

@ Incremental scalability
@ Symmetry

Design considerations

@ Incremental scalability
@ Symmetry
@ Decentralization

Design considerations

@ Incremental scalability
@ Symmetry

@ Decentralization

@ Heterogeneity

Design considerations

@ Incremental scalability
@ Symmetry

@ Decentralization

@ Heterogeneity

@ High Availability

Design considerations

CAP Theorem

Of three properties of shared-data systems
@ data consistency
@ system availability
@ tolerance to network partition

only two can be achieved at any given time.?@

2Brewer, E. A. 2000. Towards robust distributed systems (abstract). In
Proceedings of the 19th Annual ACM Symposium on Principles of Distributed
Computing (July 16-19, Portland, Oregon): 7.

Design considerations

CAP Theorem

Of three properties of shared-data systems
@ data consistency
@ system availability
@ tolerance to network partition

only two can be achieved at any given time.?@

2Brewer, E. A. 2000. Towards robust distributed systems (abstract). In
Proceedings of the 19th Annual ACM Symposium on Principles of Distributed
Computing (July 16-19, Portland, Oregon): 7.

We need to relax some constraints.

Interface

@ get(key)
o A single object
o List of objects with conflicting versions and a context

@ put(key, context, object)

Interface

@ get(key)
o A single object
o List of objects with conflicting versions and a context

@ put(key, context, object)

@ Objects are binary blobs, Dynamo had no schema.
@ Keys are hashed using MD5.

Partitioning Algorithm

Actual node

(0%
hor m \(i
Chord syste sj'14;/{1€3?;;} o1 {2

{8,9,10,11,12} {2,3,4}

Associated .
data keys 5%

{103 567y (6]

‘-*~-"\11§fi?\;:jj%ﬂii/®/

Partitioning Algorithm

Actual node

(0%
hor m \(i
Chord syste sj'14;/{1€3?;;} o1 {2

... with a twist

@ Each node gets multiple

tokens in the ring 8.9.1011,12) ©23.4)

Associated .
data keys 5%

{103 567y (6]

‘-*~-"\11§fi?\;:jj%ﬂii/®/

Partitioning Algorithm

Chord system
... with a twist
@ Each node gets multiple
tokens in the ring
Virtual nodes address:
@ Heterogeneity

Actual node

Pouemos
(147 {(1314,15) .1} {2}

{8,9,10,11,12} {2,3,4}

Associated .
data keys 5%

{103 567y (6]

‘-*~-"\j1§fi?\;:jj%ﬂii/®/

Partitioning Algorithm

Chord system

... with a twist
@ Each node gets multiple
tokens in the ring
Virtual nodes address:
@ Heterogeneity
@ Incremental scaling

Actual node

Pouemos
(147 {(1314,15) .1} {2}

{8,9,10,11,12} {2,3,4}

Associated .
data keys 5%

{103 567y (6]

‘-*~-"\j1§fi?\;:jj%ﬂii/®/

Replication

Each object is replicated to N / @ NodesB. ¢
Vb and D store
nodes '@ @ | e
| range (AB)
@ N-1 successors to the 3 77) nclding

AY

coordinator N @ @

Request coordination

Read quorum

Traditional quorum Ty GV L

e R+W>N Nz Ny =10 \ / Na=7, Ny =6
Write quorum
e W>N/2 @ ®
@ Dynamo allows clients to TR
tune N, R and W i i
e ® & H

Handling Failures

Sloppy-Quorum

@ The set of nodes in N may
change

Handling Failures

I \ and D store

Sloppy-Quorum Q) @ i

@ The set of nodes in N may IONRON
change

Anti-entropy

@ Merkel hash trees used to
find “out of sync” keys

Hash Hash Hash Hash
0-0 0-1 1-0 1-1
Data Data Data Data

block block block block
000 001 002 003

Data Versioning

Each object has a Vector clock
@ Captures causal ordering

write
handled by Sx

D1 ([Sx.1])

write
handled by Sx

D2 ([Sx,2])

write write
handlled by Sy handied by Sz

D3 ([Sx.2][Sy.1])

reconciled
and w.rmen by

5 ([Sx,3].[Sy.1][S2.1])

D4 ([Sx,2],[Sz,1])

Data Versioning

Conflict resolution

@ The when
o During writes?
o During reads?

Data Versioning

Conflict resolution

@ The when
o During writes?
@ During reads?
@ and the who

@ By the data store?
o By the application?

Data Versioning

When do divergent version arise?
@ Failure scenarios
o Node, data center, network partitions

@ Large number of concurrent writes

Data Versioning

When do divergent version arise?
@ Failure scenarios
o Node, data center, network partitions

@ Large number of concurrent writes

How frequently are divergent versions created?’

Versions Requests

1 99.94%
2 0.00057%
3 0.00047%
4 0.00009%

24 hour profile of the Shopping Cart Serivce

Client-driven vs Server-driven coordination

% NodesB.C
Client-driven vs Server-driven | andD store
uding
99.9th 99.9th Average Average
percentile percentile read write
read latency write latency latency latency
Server-driven 68.9 68.5 3.9 4.02
Client-driven 30.4 30.4 1.55 1.9

Times are in milliseconds.

Client-driven vs Server-driven coordination

Amazon

Client Requests

\‘/
@ Service architecture GUT Y- P oo

@ Decentralized ~. .~

@ Loosely coupled

tl;f‘: / \\.x_. oo Aggregator
sk | \- / -LttJ Services

Request Routing

//\\

o,

':fku gy k{ 9 S

k :”: U U U | Amazan
:_/ b <1 53
Ygg/ Yo9

Dynamoa instances Other datastores

Services

Client-driven vs Server-driven coordination

Amazon

@ Service architecture
@ Decentralized
@ Loosely coupled

@ SLA expressed and
measured at the 99.9%
percentile

@ Optimizations not
focused on averages

Client Requests

t) t/l t':/l t) "‘J Rendznnq

Components
Request Routing

tl;r;f..- / \\._. T Aggregator
S | \ / '-I,ttJ Services
Request Routing
TLL J gy T $
k :”: U U U (Amazan
:_/ t’] p , 53
Ygg/ Yug

Dynamoa instances Other datastores

Services

EJ‘:E;" J

Aukaefni

Distributed buckets

Aukaefni

Distributed buckets

Aukaefni

Distributed buckets

)
N
= /‘\I / ‘\{\/‘
19 5)
x N
(c)

Aukaefni

Distributed buckets

Aukaefni

Distributed buckets

Aukaefni

Distributed buckets

Aukaefni

%)
3
Q
X
3]
3
o
g
@
2
3
]
=
s
2
(=]

Aukaefni

%)
3
Q
X
3]
3
o
g
@
2
3
]
=
s
2
(=]

Aukaefni

%)
3
Q
X
3]
3
o
g
@
2
3
]
=
s
2
(=]

Aukaefni

e
c
o
£
o
3]

&
o
®

e
©

(=]

Clustered

Random

	Dynamo
	Design considerations
	Interface
	Partitioning Algorithm
	Replication
	Request coordination
	Handling Failures
	Data Versioning
	Client-driven vs Server-driven coordination

	Aukaefni

