
Gagnasafnsfræði
Venslalíkanið (The Relational Model)

Hallgrímur H. Gunnarsson

Part I: The Relational Model

1

Relational Database: Definitions

Relational database: a set of relations

Relation: made up of two parts: schema and instance

Schema: specifies name of relation, plus name and type of each column

Students(sid: string, name: string, login: string)

Instance: a table, actual data at a given time

Cardinality: number of rows

Degree/arity: number of fields
2

Example: Instance of Students Relation

Schema:

Students(sid: string, name: string, login: string)

Instance:

sid name login
50000 Dave dave@cs
53666 Jones jones@cs
53688 Smith smith@eecs
53650 Smith smith@math

Terms: relation, table, tuple (row/record), attribute (column/field), domain (type)

3

Example: Instance of Students Relation (2)

Instance:

sid name login
50000 Dave dave@cs
53666 Jones jones@cs
53688 Smith smith@eecs
53650 Smith smith@math

Cardinality = 4, degree = 3, all rows distinct

Do all columns in a relation instance have to be distinct?

4

SQL

SQL: the standard query language for relational databases

Data Definition Language (DDL):

1. create, modify, delete relations (tables)
2. specify constraints
3. administer users, security, etc.

Data Manipulation Language (DML):

1. Specify queries to find tuples that satisfy criteria
2. insert, update, delete tuples

5

Creating relations in SQL

Create the Students relation:

CREATE TABLE Students
(

sid INTEGER, -- Or SERIAL in PostgreSQL
name TEXT,
login VARCHAR(32)

);

Generally (albeit simplified):

CREATE TABLE <name> (<field> <domain>, ...);

6

Example: CREATE TABLE in PostgreSQL
psql shell:

postgres=# CREATE TABLE Students (
postgres(# sid INTEGER,
postgres(# name TEXT,
postgres(# login VARCHAR(32));
CREATE TABLE
postgres=# \d Students

Table "public.Students"
Column | Type | Modifiers
--------+-----------------------+-----------
sid | integer |
name | text |
login | character varying(32) |

postgres=#
7

Destroying and Altering Relations

Destroy the Students relation (table and data dropped):

postgres=# DROP TABLE Students;
DROP TABLE
postgres=#

Altering the Students relation:

postgres=# ALTER TABLE Students ADD ssn VARCHAR(10);
ALTER TABLE
postgres=# ALTER TABLE Students DROP ssn;
ALTER TABLE
postgres=#

8

Adding and Deleting Tuples (rows)
Insert a single tuple:

postgres=# INSERT INTO Students (sid,name,login)
postgres-# VALUES (12000, 'Hallgrimur H. Gunnarsson', 'hhg@cs');
INSERT 0 1
postgres=#

Delete all tuples satisfying some condition:

postgres=# DELETE FROM Students WHERE login='hhg@cs';
DELETE 1
postgres=#

More generally:

DELETE FROM <name> WHERE <condition>
9

Integrity Constraints (ICs)

IC: condition that must be satisfied for any instance of the database

1. ICs are specified when schema is defined
2. ICs are checked when relations are modified

A legal instance of a relation is one that satisfies all specified ICs

If the DBMS checks ICs, stored data is more faithful to ”real-world” meaning

Also avoids inconsistencies, data entry errors, etc.

10

Keys
Keys are a way to associate tuples in different relations

Key associations can be enforced by integrity constraints in schema definitions

Students:

sid name login
50000 Dave dave@cs
53666 Jones jones@cs
53688 Smith smith@eecs
53650 Smith smith@math

Enrolled:

sid cid grade
50000 History 101 A
50000 Math 101 A
53666 History 101 B
53650 Databases A

The field Students.sid is primary key

The field Enrolled.sid is a foreign key that references Students.sid
11

Primary Keys

A set of fields is a key for a relation if:

1. No two distinct tuples can have the same values in all key fields, and
2. This is not true for any subset of the key

If part one is true but part two is false then we have a superkey

A key is minimal in the sense that no proper subset of a key can also be a key

Of all the candidate keys for a relation, one is chosen to be the primary key

Example: { sid } is a key for Students, { sid, name } is a superkey for Students

12

Primary and Candidate Keys in SQL

Specify UNIQUE constraint for each candidate key

Specify PRIMARY KEY for the primary key

Example:

CREATE TABLE Students
(

sid INTEGER,
name TEXT,
login VARCHAR(32),
UNIQUE (sid, name),
PRIMARY KEY (sid)

);
13

Primary and Candidate Keys in SQL (2)

Another example:

CREATE TABLE Enrolled
(

sid INTEGER,
cid VARCHAR(32),
grade CHAR(1)
PRIMARY KEY (sid, cid)

);

Q: What restrictions follow from using { sid, cid } as the primary key?

14

Foreign Keys, Referential Integrity

Foreign Key: a ”logical pointer”

1. Set of fields in one relation that is used to ”refer” to a tuple in another relation
2. Reference to primary key of the second relation

References are based on primary keys, since they uniquely identify tuples in relations

Foreign key associations can be enforced by integrity constraints, thereby ensuring
referential integrity, i.e. no dangling references

Example: Enrolled.sid is a foreign key that refers to Students

15

Foreign Keys in SQL

Example:

CREATE TABLE Enrolled
(

sid INTEGER,
cid VARCHAR(32),
grade CHAR(1)
PRIMARY KEY (sid, cid),
FOREIGN KEY (sid) REFERENCES Students(sid)

);

16

Enforcing Referential Integrity

Assume: Enrolled.sid is a foreign key referencing Students

Two ways for dangling tuples to arise:

1. Insertion or update to Enrolled introduces key not in Students
2. Deletion or update to Students leaves dangling tuples in Enrolled

Default action is to reject change.

(The only option for Enrolled is to reject the change)

Other options for changes to Students: CASCADE, SET NULL, SET DEFAULT

17

CASCADE vs. SET NULL vs. SET DEFAULT

SQL-92 and above support all 4 options on deletes and updates:

1. Default is NO ACTION (delete/update is rejected)
2. CASCADE: propagate action to affected tuples
3. SET NULL: sets foreign key of referencing tuple to NULL
4. SET DEFAULT: sets foreign key of referencing tuple to default value

Example: Delete a student, what happens to his enrollments?

1. CASCADE: Delete the enrollments as well
2. SET NULL: Set Enrolled.sid of affected enrollments as NULL
3. SET DEFAULT: Set Enrolled.sid of affected enrollments to default value

18

Referential Integrity in SQL

Example:

CREATE TABLE Enrolled
(

sid INTEGER,
cid VARCHAR(32),
grade CHAR(1)
PRIMARY KEY (sid, cid),
FOREIGN KEY (sid) REFERENCES Students(sid)

ON DELETE CASCADE
);

19

Views

A view is just a relation, but we store a definition rather than a set of tuples

Computed on the fly (or pre-computed if it is a materialized view)

Example:

CREATE VIEW Course_Info (cid,enrollment) AS
SELECT cid, COUNT(*) as enrollment FROM Enrolled GROUP BY cid;

20

Describe View in PostgreSQL

Example:

postgres=# \d Course_Info
View "public.Course_Info"

Column | Type | Modifiers
------------+-----------------------+-----------
cid | character varying(32) |
enrollment | bigint |
View definition:
SELECT Enrolled.cid, count(*) AS enrollment

FROM Enrolled
GROUP BY Enrolled.cid;

21

Part II: ER to Relational

22

Review of ER Constraints

Entity may appear in any number of relations in R, including none:

A R

An entity in A may appear in at most one relation in R (key constraint):

A R

Every entity in A must be a member of at least one relation in R (total constraint):

A R

Every entity in A must be a member of exactly one relation in R (both):

A R

23

Convert ER diagram into tables

Rough algorithm:

1. Put all entities in their own table
2. Put reference on ”many” in many-one relationship to the ”one”
3. Put all many-many relationships into their own table

24

Step 1: Entity Sets to Tables

Nemandi

id nafn

netfang

Námskeið

id nafn

ECTS

CREATE TABLE Nemandi
(

id INTEGER,
nafn TEXT,
netfang VARCHAR(32),
PRIMARY KEY (id)

);

CREATE TABLE Namskeid
(

id INTEGER,
nafn TEXT,
ECTS INTEGER,
PRIMARY KEY (id)

);
25

Step 2: Many-One Relationships

Nemandi

id nafn

Námskeið

id nafn

ECTS

Tekur

einkunn KennariKennir

(4) Kennari kennir eitt
eða fleiri námskeið

(3) Námskeið er kennt af
einum eða fleiri kennurum

(1) Nemandi getur tekið
hvaða fjölda sem er af

námskeiðum, þmt. ekkert

(2) Námskeið hefur einn
eða fleiri nemendur

CREATE TABLE Namskeid
(

id INTEGER,
nafn TEXT,
ECTS INTEGER,
kennari INTEGER,
PRIMARY KEY (id),
FOREIGN KEY (kennari) REFERENCES Kennari (id)

);
26

Step 3: Many-to-Many Relationships

Nemandi

id nafn

Námskeið

id nafn

ECTS

Tekur

einkunn

CREATE TABLE Tekur
(

nemandi INTEGER,
namskeid INTEGER,
einkunn FLOAT,
PRIMARY KEY (nemandi, namskeid),
FOREIGN KEY (nemandi) REFERENCES Nemandi (id),
FOREIGN KEY (namskeid) REFERENCES Namskeid (id)

);

27

